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Control of a chaotic system by homogeneous nonlinear driving, when a conditional Lyapunov exponent is
zero, may give rise to special and interesting synchronizationlike behaviors in which the response evolves in
perfect correlation with the drive. Among them, there are the amplification of the drive attractor and the shift
of it to a different region of phase space. In this paper, these synchronizationlike behaviors are discussed, and
demonstrated by computer simulation of the Lorentz model [E. N. Lorenz, J. Atmos. Sci. 20 130 (1963)] and
the double scroll [T. Matsumoto, L. O. Chua, and M. Komuro, IEEE Trans. CAS CAS-32, 798 (1985)].

PACS number(s): 05.45.+b, 47.52.+j, 84.30.—r

The synchronization of chaotic systems by means of non-
linear driving is a phenomenon, recently discovered [1], that
has received considerable attention in the literature of the last
few years [2—9], because of both the surprising nature of the
phenomenon and its prospective practical applications, in
particular in communication technology [3,4] and in neural
science [1,5]. When this phenomenon occurs, the phase
space trajectory of a conveniently chosen copy of a sub-
system of a chaotic system may converge to the trajectory of
the original subsystem by driving it with a proper signal
from the full chaotic system. This synchronization of the
copy subsystem to the original occurs when the conditional
Lyapunov exponents of the last are all negative [1,2]. Almost
all the literature on this subject deals with this case, while the
situation in which there are non-negative exponents has re-
ceived only marginal attention [6]. However, even when not
all the conditional Lyapunov exponents are negative, we
might have interesting phenomena because we will be driv-
ing systems with chaotic signals. In this paper, I will point
out that when all exponents are negative, except for a few
that take a zero value, one may find cases in which the copy
of the subsystem reproduces its original despite the fact that
the distance between both subsystems does not converge to
zero. This can be called synchronization, if the term is un-
derstood in some generalized sense [7,8]. In particular, I will
present two examples, one in which the copy subsystem fol-
lows an attractor which is a magnified (or reduced) copy of
the original and another in which the copy reproduces the
original in a region of phase space where the latter will be
unstable.

Following Pecora and Carroll [1,2] one starts with a cha-
otic system described by the set of variables u that evolves
under the equation u=f(u). This is divided into two sub-
systems, described by the sets of variables v and w, such that
u=(v,w), and the evolution equations v=g(v,w) and
w=h(v,w) are obeyed. Then duplicate the w subsystem and
call w’ the new variables, that evolve under the additional
equation w' =h(v,w’). The composed system, of variables
(v,w), defines the drive system that controls the evolution of
the subsystem, of variables w', known as the response sys-
tem, through the variables v, called the drive signal. Syn-
chronization occurs when the distance in phase space be-
tween the subsystems w and w', Aw(®)=w'(¢)—w(?),
converges to zero as time increases. The time evolution of
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Aw  obeys the variational equation d(Aw)/dt
=D h(v,w)Aw, where D h(v,w) is the Jacobian of the w
subsystem. The corresponding Lyapunov exponents are
called conditional Lyapunov exponents. If they are all nega-
tive there will be stable synchronization of w' to w [1,2].
In this paper, I will address the special case in which one
has conditional Lyapunov spectra composed of zero and
negative conditional Lyapunov exponents. For simplicity, I
will limit the discussion to the three dimensional case; so
that u=(x,y,z), w=(x,y), and v=(z). The assumed spec-
trum of conditional Lyapunov exponents will be of the type
(A =0, N,<0). A zero conditional Lyapunov exponent
would mean that the distance between drive and response
remains constant in the average. This may imply that the
response does not synchronize at all with the drive; but, it
just wanders around it with no correlation between the phase
space motion of both systems. However, a zero conditional
Lyapunov exponent allows other possibilities which may be
of interest from the scientific and technical points of view.
The following two basic ones will be studied in this paper.
(I) Amplification (or reduction) of the drive: the response
describes a trajectory which reproduces the drive, but mag-
nified (or reduced) by a factor A. (II) Phase space shift of the
drive: the response reproduces the drive in a region of the
phase space which is shifted by a translation vector

f’=(T x»Ty) from the region where the drive evolves. The
values of T, and T,, or of A, will depend on the initial
conditions of drive and response. Both cases would give rise
to a response that, in the average, does not converge nor
diverge from the drive; however, the situation differs from
the case of no synchronization because here there is an iso-
chronous correspondence between the evolution of the two
systems.

A condition for the amplification of the drive to occur is
the invariance of the equation w=~h(v,w) under the coordi-
nate transformation w*=Aw; i.e., w*=h(v,w*). This can
be understood if one has in mind that, for any system, if the
initial conditions for drive and response are exactly the same,
the response will remain synchronized with the drive. Then,
if the above invariance holds, for initial conditions of the
response obtained from those of the drive through the above
coordinate transformation one will obtain type I synchroni-
zation. Likewise, the invariance of w=h(v,w) under the
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coordinate translation w*=w+T,, is a condition for the
phase space shift, and other possible symmetries will gener-
ate other types of generalized synchronization.

This generalized synchronization differs from Pecora and
Carroll’s in the stability properties. The synchronization state
obtained when all the conditional Lyapunov exponents are
negative is stable in the sense that a small perturbation that
puts a synchronized response apart from the drive will be
rapidly forgotten because the response will converge to the
drive. In the case studied here, if a synchronization state of a
generalized type is achieved, such perturbation sends the re-
sponse to another close synchronized state (i.e., it changes
the value of A, or of T, and Ty). This can be so because,
with the conditional Lyapunov exponents nonpositive, no ex-
ponential divergence of the trajectories of drive and response
is to be expected. As a consequence, a small perturbation of
the response in an orbit may send it to another orbit, similar
and close to the former, where it will stay. In brief, and using
the term stability in the sense of Lyapunov [10,11], Pecora
and Carroll synchronization is asymptotically stable, while
the type of synchronization discussed here is uniformly
stable, but not unstable. It is worth noting that uniform sta-
bility is still stronger than orbital stability, another important
type of stability which is found in planetary and satellite
motion [11].

I will demonstrate these ideas by means of a computer
simulation study of two models of fluxes. These are the Lo-
renz model [12] for fluid convective motion

x=0(y—x),
y=(r—z)x—y, 1
z=xy—bz,

at the parameter values r=60, =10, and b=8/3, and the
model for an electronic circuit studied by Matsumoto, Chua,
and Komuro [13], and known as the double scroll,

x=a[z—x—G(x)],

)}:—ﬁz’ (2)
z=x—z+y,

where G(x) is a function given by G(x)=bx+a—>b if
x=1, G(x)=ax if |x|<1, and G(x)=bx—a+b if x<—1,
and the parameter values are =9, B=14(2/7), a=—8/7,
and b= —5/7. To maintain notation consistent through this
paper, when, writing Eq. (2), I have interchanged the names
of the variables y and z, and the order of the last two equa-
tions with respect to the original in [13]. At the parameter
values indicated, the two systems are well inside the chaotic
regime. I have computed their spectra of conditional
Lyapunov exponents under z driving using the method de-
veloped by Benettin et al. [14], and by Shimada and Na-
gashima [15]. The results obtained are (0.00, —11.00) for the
Lorenz model, and (0,—1.19) for the double scroll. Having in
mind the margins of error due to the numerical procedures,
these results are in good agreement with the spectrum
(+0.0108,—11.01) reported by Pecora and Carroll [1] for
the Lorenz model. So, for both models under z driving one
exponent is zero and the other is negative. Moreover, each of
the sets of equations (1) and (2) exhibits one of the symme-
tries mentioned above.

In Figs. 1(a) and 1(b) I have displayed trajectories in
phase space of drive and response, respectively, for the Lo-
renz model. The same scale is used in both plots to show
how the response follows a trajectory which is an amplifica-
tion of the drive attractor by a factor of 6 approximately.
Parametric plots of the variables of the response versus the
variables of the drive are shown in Fig. 1(c) for x'=x'(x)
and in Fig. 1(d) for y’ =y’(y). The straight lines with slope
around 6 are clear evidence that a synchronization state of
type I has been achieved. The few points that fall out of this
line correspond to an initial transitory. A similar analysis is
displayed in Fig. 2 for the double scroll. The drive and re-
sponse trajectories displayed in Fig. 2(a) show how the re-
sponse attractor is a copy of the drive displaced a distance
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of about 8 units in the y direction. Parametric plots of the
response versus the drive variables are displayed in Fig. 2(b).
For the x signal a straight line segment centered in the origin
and with slope equal to 1 is obtained. For the y signal a
segment with slope 1 is also obtained but its center is located
around the coordinates (0,8) which proves that generalized
synchronization of the type Il with T,=0 and T,#0 has
been achieved.

To study the effect of the initial conditions, I have com-
puted the time evolutions of drive and response for a fixed
initial condition of the drive, chosen as a point in the stable
attractor, and a set of initial conditions of the response cho-
sen on a rectangular grid with a linear size one order of
magnitude larger than the linear size of the drive attractor.
Then, for each of the initial conditions of the drive, I have
performed least squares fits to a straight line of the paramet-
ric functions x'=x'(x) and y'=y’(y). The slope of this
line gives the amplification factor, A, and the ordinates in the
origin given the magnitude of the translations, T, and T, .
For the Lorenz model the function giving the dependence of
A on the response initial conditions, (x;,y(), is depicted by
a smooth plane that intersects the A =0 plane along a straight
line that crosses the origin of coordinates, so that the values
of A on one side of this line are positive while on the other
are negative. The negative values of A appear because of the
inversion symmetry of the Lorenz equations around the z
axis. This allows two possibilities for the response to repro-
duce the drive: one with the current state point of both sys-
tems evolving in the same quadrant of the x-y plane (A>0)
and another with the response moving in the quadrant op-
posed to the one where the drive is currently moving (A
<0). Moreover, the slope of the plane and the orientation of
the line giving its intersection with the A=0 plane vary
smoothly with the initial condition used for the drive when
this is chosen along successive points on the stable attractor.
For the double scroll there is also a smooth variation of the
value of T, with the response initial conditions: the function
T,=T,(xq,yq) is depicted by a plane whose intersection
with the T),=0 plane is a straight line parallel to the x axis.
The slope of this plane does not change with the initial con-
dition of the drive (taken along the stable attractor), while its

intersection with the T7,=0 plane evolves smoothly. The
value of T, is always zero. Altogether, these results support
the assertion that the type of stability in the present case is
uniform.

I have studied the amplification and shift of the response
when there is imperfect coupling of the drive to the response;
i.e., when there is a Gaussian noise added to the drive signal,
or there are differences between the parameters of drive and
response. In any case, if the imperfection is small enough,
the response initially evolves to move in the close neighbor-
hood of the synchronization state it would attain in the case
of perfect coupling. However, when there is external noise,
because of the uniform nature of stability, one observes a
time evolution of A, or of T, , of a diffusive appearance. The
time window needed to observe this evolution decreases
from infinity when the level of noise increases from zero.
The effect of parameter differences is system dependent be-
cause the type of equations that describe the combined sys-
tem of drive and response are those of five-dimensional ho-
mogeneous nonlinear systems, which are used to exhibit
complex and varied behaviors. For the Lorenz case, one ob-
tains results very similar to the noisy ones; while, for the
double scroll the initial nearly synchronized motion stays
and becomes progressively more defective as the parameter
mismatch increases. There are important system differences
in the sensitivity to external noise, too. For example, for an
observation time window that spans over 2000 orbits, the
order of magnitude of the variance of the noise at which its
presence starts to be noticeable is 106 for the Lorenz model
and 10™3 for the double scroll. Anyway, even in the worst
case, if the degree of imperfection is small enough, one can
observe nearly generalized synchronization states at least in-
side a time window.

It deserves to be noted that Chua et al. [9] made a par-
ticular observation of what I have called here type II syn-
chronization in a systematic experimental study on the syn-
chronization of Chua’s circuit. The function G(x) for this
experimental circuit is somewhat different than the one used
here and so are the numerical values of the parameters; how-
ever, the spectrum of conditional Lyapunov exponents is still
of the type (0,—). This experimental observation, together
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with the numerical results mentioned in the above paragraph,
support the idea that the type of response behavior described
here may be robust enough to be sustained by physical sys-
tems.

I will finally point out that, besides the results reported, I
have observed behavior of this type in the same models at
other parameter values, as well as in other mathematical
models. I have observed the amplification phenomenon in
the Rikitake model for the reversal of Earth’s magnetic field
[16], the shift of the attractor in two models for electronic
oscillators, one by Shinriki, Yamamoto, and Mori [17] and
another by Murali and Lakshmanan [4], and a combination
of amplification and shift in a model of chemical chaos due
to Gaspard and Nicolis [18]. This suggests that, although
these type of phenomena are expected for a special type of
Lyapunov spectra, they may be more usual than what one

might think at first sight.

In conclusion, I have reported theoretical reasoning and
numerical evidence of two interesting synchronizationlike
phenomena that may happen when a subsystem evolves un-
der nonlinear driving with one of the conditional Lyapunov
exponents zero while the other is negative. These are ampli-
fication of a chaotic attractor and motion of the response in a
region of phase space shifted with respect to the region
where the stable attractor evolves. The changes observed in
the response state with the variation of initial conditions sup-
port the statement that these phenomena may be uniformly
stable. This type of generalized synchronization can be ob-
served in mathematical models of a variety of physical sys-
tems.
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